B. Bài tập và hướng dẫn giải

BÀI TẬP

4.31. Trong mỗi hình sau (H.4.33) có các cặp tam giác vuông nào bằng nhau? Vì sao?

4.32. Cho các điểm A, B, C, D, E như Hình 4.34. Biết rằng E là trung điểm của BC, chứng minh rằng ΔABE = ΔDCE.

4.33. Cho các điểm A, B, C, D, E như Hình 4.35. Biết rằng AC vuông góc với BD, EA = EB và EC = ED.

Chứng minh rằng:

a) ΔAED=ΔBEC.

b) ΔABC=ΔBAD.

4.34. Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36). Chứng minh rằng BN = CM và BN  CM.

4.35. Cho bốn điểm A, B, C, D như Hình 4.37. Biết rằng DAB^=CAB^, hãy chứng minh CB = DB.

4.36. Cho AH và DK lần lượt là hai đường cao của hai tam giác ABC và DEF như Hình 4.38. Biết rằng ΔABC=ΔDEF, hãy chứng minh AH = DK.

4.37. Cho AH và DK lần lượt là hai đường cao của tam giác ABC và DEF như Hình 4.39. Chứng minh rằng:

a) Nếu AB = DE; BC = EF và AH = DK thì ΔABC=ΔDEF;

b) Nếu AB = DE, AC = DF và AH = DK thì ΔABC=ΔDEF.

4.38. Cho bốn điểm A, B, C, D như Hình 4.40, trong đó AB = DC. Chứng minh rằng:

a) AC = BD.

b) AD // BC

4.39. Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy hai điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:

a) AF = CE.

b) AF//CE.

4.40. Cho năm điểm A, B, C, D, E như Hình 4.42, trong đó DA = DC, DB = DE.

a) Chứng minh rằng AB = CE.

b) Cho đường thẳng CE cắt AB tại F. Chứng minh rằng BFC^=90.