B. Bài tập và hướng dẫn giải

BÀI TẬP

Bài 70. Cho tam giác ABC cân tại A có hai trung tuyến BM và CN cắt nhau tại G. Chứng minh:

a) BM = CN.

b) Tam giác GBC là tam giác cân;

c) AG vuông góc với BC.

Bài 71. Cho tam giác ABC có trọng tâm G. Gọi M là trung điểm của BC. Trên tia đối của MG lấy điểm D sao cho MD = MG.

a) Chứng minh CG là trung tuyến của tam giác ACD.

b) Chứng minh BG song song với CD.

c) Gọi I là trung điểm của BD; AI cắt BG tại F. Chứng minh AF = 2FI.

Bài 72. Chứng minh: Nếu  một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.

Bài 73. Cho tam giác ABC đều và có G là trong tâm.

a) Chứng minh GA = GB = GC.

b) Trên tia AG lấy điểm D sao cho GD = GA. Chứng minh tam giác BGD là tam giác đều.

Bài 74. Cho tam giác ABC có đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho DE = BD. Gọi M, N lần lượt là trung điểm của BC, CE. Gọi I, K lần lượt là giao điểm của AM, AN với BE. Chứng minh BI = IK = KE.

Bài 75. Tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC. Chứng minh rằng $\widehat{BAC}=90^{\circ}$

Bài 76. Cho tam giác nhọn ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên cạnh AC lấy điểm E sao cho $AE=\frac{1}{3}AC$

a) Chứng minh E là trọng tâm tam giác BCD$

b) Gọi M là trung điểm DC. Chứng minh ba điểm B, M, E thẳng hàng. 

Bài 77. Cho tam giác ABC cân tại A  có đường trung tuyến AD, G là trọng tâm. Trên tia đối của tia DA lấy điểm E sao cho DE = DG.

a) Chứng minh BG = GC = CE = BE.

b) Chứng minh $\Delta ABE=\Delta ACE$

c) Nếu $CG=\frac{1}{2}AE$ thì tam giác ABC là tam giác gì? Vì sao?

Bài 78. Cho tam giác DEF cân tại D có đường trung tuyến EM. Trên tia đối của tia ME lấy điểm N sao cho MN = ME.

a) Chứng minh DE = FN và tam giác DFN là tam giác cân.

b) Trên tia đối của tia FD lấy điểm A sao cho FA = FD. Chứng minh F là trọng tâm của tam giác NEA.

c) Chứng minh tam giác DNA là tam giác vuông.

d) Kẻ EB vuông góc với NA ($B\in NA$). Chứng minh ba điểm E, F, B thẳng hàng.