A. TÓM TẮT LÝ THUYẾT
1. Định nghĩa đường elip
Định nghĩa: Trong mặt phẳng, cho hai điểm cố định \(F_1\) và \(F_2\)
Elip là tập hợp các điểm \(M\) sao cho tổng \(F_1M +F_2M = 2a\) không đổi.
Các điểm \(F_1\) và \(F_2\) gọi là tiêu điểm của elip.
Khoảng cách \(F_1F_2= 2c\) gọi là tiêu cự của elip.
2. Phương trình chính tắc của elip
Cho elip có tiêu điểm \(F_1\) và \(F_2\) chọn hệ trục tọa độ \(Oxy\) sao cho \(F_1(-c ; 0)\) và \(F_2(c ; 0)\). Khi đó người ta chứng minh được:
\(M(x ; y) \in\) elip \(\Rightarrow\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}} = 1\) (1)
trong đó: \(b^2= a^2– c^2\)
Phương trình (1) gọi là phương trình chính tắc của elip
3. Hình dạng của elip
Xét elip \((E)\) có phương trình (1):
a) Nếu điểm \(M(x; y)\) thuộc \((E)\) thì các điểm \(M_1(-x ; y) M_2(x ;- y)\) và \(M_3(-x ; -y)\) cũng thuộc \((E)\).
Vậy \((E)\) có các trục đối xứng là \(Ox, Oy\) và có tâm đối xứng là gốc \(O\).
b) Thay \(y = 0\) vào (1) ta có \(x = ±a\) suy ra \((E)\) cắt \(Ox\) tại hai điểm \(A_1(-a ; 0) A_2(a ;0)\).
Tương tự thay \(x = 0\) vào (1) ta được \(y = ±b\), vậy \((E)\) cắt \(Oy\) tại hai điểm \( B_1(0 ; -b) B_2(0 ;b)\).
Các điểm \(A_1, A_2, B_1, B_2\) gọi là các đỉnh của elip
Đoạn thẳng \(A_1A_2\) gọi là trục lớn, đoạn thẳng \(B_1,B_2\) gọi là trục nhỏ của elip.
4. Liên hệ giữa đường tròn và đường elip
Nếu tiêu cự của elip càng nhỏ thì $b$ càng gần $a$, tức là trục nhỏ của elip càng gần bằng trục lớn. Lúc đó elip có dạng gần như hình tròn.
B. Bài tập và hướng dẫn giải
Câu 1: Trang 88 - SGK Hình học 10
Xác đinh độ dài các trục, tọa độ tiêu điểm , tọa độ các đỉnh và vẽ các elip có phương trình sau:
a) \(\frac{x^{2}}{25} + \frac{y^{2}}{9}= 1\)
b) \(4x^2+ 9y^2= 1\)
c) \(4x^2+ 9y^2= 36\)
Câu 3: Trang 88 - SGK Hình học 10
Lập phương trình chính tắc của elip, biết:
a) Trục lớn và trục nhỏ lần lươt là \(8\) và \(6\)
b) Trục lớn bằng \(10\) và tiêu cự bằng \(6\)
Câu 3: Trang 88 - SGK Hình học 10
Lập phương trình chính tắc của elip trong các trường hợp sau:
a) Elip đi qua các điểm \(M(0; 3)\) và \(N( 3; \frac{-12}{5})\)
b) Một tiêu điểm là \(F_1( -\sqrt3; 0)\) và điểm \(M(1; \frac{\sqrt{3}}{2})\) nằm trên elip
Câu 4: Trang 88 - SGK Hình học 10
Để cắt một bảng hiệu quảng cáo hình elip có các trục lớn là \(80cm\) và trục nhỏ là \(40 cm\) từ một tấm ván ép hình chữ nhật có kích thước \(80cm \times 40cm\), người ta vẽ một hình elip lên tấm ván như hình bên dưới. Hỏi phải ghim hai cái đinh cách các mép tấm ván ép bao nhiêu và lấy vòng dây có độ dài là bao nhiêu?
Câu 5: Trang 88 - SGK Hình học 10
Cho hai đường tròn \({C_1}({F_1};{R_1})\) và \({C_2}({F_2};{R_2})\). \(C_1\) nằm trong \(C_2\) và \(F_1≠ F_2\). Đường tròn \((C)\) thay đổi luôn tiếp xúc ngoài với \(C_1\) và tiếp xúc trong với \(C_2\).Hãy chứng tỏ rằng tâm \(M\) của đường tròn \((C)\) di động trên một elip.