Đây là kiến thức mới trong chương trình lớp 9 .Và để giúp các bạn làm quen cũng như nắm chắc nội dung bài học , Trắc nghiệm Online xin giới thiệu những bài học bổ ích nhất theo chương trình cơ bản .Hi vọng sẽ là nguồn tài liệu tham khảo hữu ích!.
A. Tổng hợp lý thuyết
I. Định lí
ĐỊNH LÍ
- Với hai số a , b không âm , ta có : $\sqrt{a.b}=\sqrt{a}.\sqrt{b}$
II. Áp dụng
1. Quy tắc khai phương một tích
Muốn khai phương một tích của các số không âm , ta có thể khai phương từng thừa số rồi nhân các kết quả với nhau .
2. Quy tắc nhân các căn bậc hai
Muốn nhân các căn bậc hai của các số không âm , ta có thể nhân các số dưới dấu căn với nhau rồi khai phương kết quả đó .
Tổng quát :
- Với hai biểu thức A , B không âm , ta có : $\sqrt{A.B}=\sqrt{A}.\sqrt{B}$
- Đặc biệt , với biểu thức không âm A , ta có : $(\sqrt{A})^{2}=\sqrt{A^{2}}=A$
B. Bài tập và hướng dẫn giải
Câu 17: Trang 14 - sgk toán 9 tập 1
Áp dụng quy tắc khai phương một tích , hãy tính :
a. $\sqrt{0,09.64}$
b. $\sqrt{2^{4}.(-7)^{2}}$
c. $\sqrt{12,1.360}$
d. $\sqrt{2^{2}.3^{4}}$
Câu 19: Trang 15 - sgk toán 9 tập 1
Rút gọn các biểu thức sau :
a. $\sqrt{0,36a^{2}}(a<0)$
b. $\sqrt{a^{4}(3-a)^{2}}(a\geq 3)$
c. $\sqrt{27.48(1-a)^{2}}(a>1)$
d. $\frac{1}{a-b}\sqrt{a^{4}(a-b)^{2}}(a>b)$
Câu 18: Trang 14 - sgk toán 9 tập 1
Áp dụng quy tắc nhân các căn bậc hai , hãy tính :
a. $\sqrt{7}.\sqrt{63}$
b. $\sqrt{2,5}.\sqrt{30}.\sqrt{48}$
c. $\sqrt{0,4}.\sqrt{6,4}$
d. $\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}$
Câu 20: Trang 15 - sgk toán 9 tập 1
Rút gọn các biểu thức sau :
a. $\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}} (a\geq 0)$
b. $\sqrt{13a}.\sqrt{\frac{52}{a}} (a> 0)$
c. $\sqrt{5a}.\sqrt{45a}-3a (a \geq 0)$
d. $(3-a)^{2}-\sqrt{0,2}.\sqrt{180a^{2}}$
Câu 21: Trang 15 - sgk toán 9 tập 1
Khai phương tích 12 . 30 . 40 được :
A. 1200
B. 120
C. 12
D. 240
Câu 22: Trang 15 - sgk toán 9 tập 1
Biến đổi các biểu thức dưới dấu căn thành dạng tích rồi tính :
a. $\sqrt{13^{2}-12^{2}}$
b. $\sqrt{17^{2}-8^{2}}$
c. $\sqrt{117^{2}-108^{2}}$
d. $\sqrt{313^{2}-312^{2}}$
Câu 23: Trang 15 - sgk toán 9 tập 1
Chứng minh :
a. $(2+\sqrt{3})(2-\sqrt{3})=1$
b. $\sqrt{2006}-\sqrt{2005}$ và $\sqrt{2006}+\sqrt{2005}$ là hai số nghịch đảo của nhau .
Câu 24: Trang 15 - sgk toán 9 tập 1
Rút gọn và tìm giá trị ( làm tròn đến chữ số thập phân thứ ba ) của các căn thức sau :
a. $\sqrt{4.(1+6x+9x^{2})^{2}}$ tại $x=-\sqrt{2}$
b. $\sqrt{9a^{2}(b^{2}+4-4b)}$ tại $a=-2,b=-\sqrt{3}$
Câu 25: Trang 16 - sgk toán 9 tập 1
Tìm x , biết :
a. $\sqrt{16x}=8$
b. $\sqrt{4x}=\sqrt{5}$
c. $\sqrt{9(x-1)}=21$
d. $\sqrt{4(x-1)^{2}}-6=0$
Câu 26: Trang 16 - sgk toán 9 tập 1
a. So sánh $\sqrt{25+9}$ và $\sqrt{25}+\sqrt{9}$ .
b. Với a > 0 , b > 0 , chứng minh $\sqrt{a+b}<\sqrt{a}+\sqrt{b}$ .
Câu 27: Trang 16 - sgk toán 9 tập 1
So sánh :
a. 4 và $2\sqrt{3}$
b. $-\sqrt{5}$ và -2