Giải câu 8 bài: Ôn tập chương 2.

a) $2^{2x-1}+ 2x^{2x-2} + 2^{2x-3} \geq 448$

<=> $\frac{1}{2}2^{2x}+\frac{1}{4}2^{2x}+\frac{1}{8}2^{2x}\geq 448$

<=> $\frac{7}{2}2^{2x}\geq 448$

<=> $2^{2x}\geq 512$

<=> $2^{2x}\geq 2^{9}$

<=> $2x\geq 2^{9}$

<=> $x\geq \frac{9}{2}$

b) $(0,4)^{x} – (2,5)^{x+1} > 1,5$

<=> $(\frac{2}{5})^{x}-(\frac{5}{2}).(\frac{5}{2})^{x}>1,5$

Đặt $(\frac{2}{5})^{x}=t,(t>0)$

<=> $2t^{2}-3t-5>0$

<=> $t>\frac{5}{2}$

<=> $(\frac{2}{5})^{x}>\frac{5}{2}$

<=> $x<-1$

c) $\log_{3}\left [ \log_{\frac{1}{2}}(x^{2}-1) \right ]<1$

<=> $\log_{3}\left [ \log_{\frac{1}{2}}(x^{2}-1) \right ]<\log_{3}3$

<=> $0< \log_{\frac{1}{2}}(x^{2}-1)<3$

<=> $\frac{1}{8}<x^{2}-1<1$

<=> $\frac{3}{2\sqrt{2}}<\sqrt{x}<\sqrt{2}$

d) $\log^{2}_{0,2}x-5\log_{0,2}x<-6$

Đặt $\log_{0,2}x=t(t>0)$

<=> $t^{2}-5t+6<0$

<=> $2<t<3$

<=> $2<\log_{0,2}x<3$

<=> $5^{-3}<x<5^{-2}$