Bài có đáp án. Đề ôn thi môn toán lớp 9 lên 10 (đề 15). Học sinh luyện đề bằng cách tự giải đề sau đó xem đáp án có sẵn để đối chiếu và kiểm tra số điểm mình làm được. Chúng ta cùng bắt đầu..

B. Bài tập và hướng dẫn giải

ĐỀ THI

Bài 1: (2,0 điểm)

Cho biểu thức $B=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}$ với $x\geq -1$ .

a.  Rút gọn biểu thức B .

b.  Tìm x sao cho B có giá trị là 16 .

Bài 2: (1,5 điểm)

Cho phương trình 7x² + 2(m-1)x – m² = 0

a. Với giá trị nào của m thì phương trình có nghiệm?

b. Trong trường hợp phương trình có nghiệm, dùng hệ thức Vi-ét, hãy tính tổng các bình phương hai nghiệm của phương trình theo m.

Bài 3: (2,0 điểm)

Một ô tô đi từ A và dự định đến B lúc 12 giờ trưa. Nếu xe chạy với vận tốc 35 km/h thì sẽ đến B chậm 2 giờ so với dự định. Nếu xe chạy với vận tốc 50 km/h thì sẽ đến B sớm 1 giờ so với dự định. Tính độ dài quãng đường AB và thời điểm xuất phát của ô tô tại A.

Bài 4: (3,5 điểm)

Cho nửa đường tròn (O; R) đường kính BC. Lấy điểm A trên tia đối của tia CB. Kẻ tiếp tuyến AF của nửa đường tròn (O) ( với F là tiếp điểm), tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Biết AF =$\frac{4R}{3}$.

a. Chứng minh tứ giác OBDF nội tiếp. Định tâm I đường tròn ngoại tiếp tứ giác OBDF.

b. Tính $\cos \widehat{DAB}$ .

c. Kẻ OM ⊥ BC ( M ∈ AD) . Chứng minh : $\frac{BD}{DM}-\frac{DM}{AM}=1$ .

d. Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O) theo R. 

Bài 5: (1,0 điểm)

Cho x, y, z là các số thực thỏa mãn điều kiện  : $\frac{3x^{2}}{2}+y^{2}+z^{2}+z=1$

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức B = x + y + z .