KHỞI ĐỘNG
Câu hỏi: Giá để đồ ở hình 33 gợi lên hình ảnh tam giác ABC và A'B'C' có: AB=A'B'; BC=B'C'; CA=C'A'. Tam giác ABC có bằng tam giác A'B'C' hay không?
Hướng dẫn giải:
Tam giác ABC bằng tam giác A'B'C'.
I. TRƯỜNG HỢP BẰNG NHAU CẠNH - CẠNH - CẠNH (C.C.C)
Hoạt động 1: Cho hai tam giác ABC và A'B'C' (Hình 34) có AB = A'B' = 2cm, AC = A'C' = 3cm, BC = B'C' = 4cm. Hãy sử dụng thước đo góc để kiểm nghiệm rằng: $\widehat{A} = \widehat{A'},\widehat{B} = \widehat{B'}, \widehat{C} = \widehat{C'}$.
Hướng dẫn giải:
HS tự thực hành.
Luyện tập 1: Hai tam giác ở hình 37 có bằng nhau không? Vì sao?
Hướng dẫn giải:
Hai tam giác ở hình 37 bằng nhau vì có 3 cạnh bằng nhau.
II. ÁP DỤNG VÀO TRƯỜNG HỢP BẰNG NHAU VỀ CẠNH HUYỀN VÀ CẠNH GÓC VUÔNG CỦA TAM GIÁC VUÔNG
Hoạt động 2: Cho hai tam giác vuông ABC và A'B'C' có: $\widehat{A}=\widehat{A'}=90^{0}$, AB=A'B'=3cm, BC=B'C'=5cm. So sánh độ dài các cạnh AC và A'C'
Hướng dẫn giải:
AC = A'C'
B. Bài tập và hướng dẫn giải
Bài 1 trang 83 toán 7 tập 2 CD
Cho Hình 42 có MN=QN; MP=QP. Chứng minh $\widehat{MNP}=\widehat{QNP}$
Bài 2 trang 83 toán 7 tập 2 CD
Cho Hình 43 có AB=AD, $\widehat{ABC}=\widehat{ADC}=90^{0}$. Chứng minh $\widehat{ACB}=\widehat{ACD}$
Bài 3 trang 83 toán 7 tập 2 CD
Cho hình 44 có AC = BD, $\widehat{ABC} = \widehat{BAD} = 90^{0}$. Chứng minh AD = BC.
Bài 4 trang 83 toán 7 tập 2 CD
Cho hai tam giác ABC và MNP thỏa mãn: AB=MN, BC=NP, AC=MP, $\widehat{A}=65^{0}$, $\widehat{N}=71^{0}$. Tính số đo các góc còn lại của hai tam giác.