Bài học với nội dung kiến thức về Nguyên hàm. Một kiến thức mới đòi hỏi các bạn học sinh cần nắm được lý thuyết để vận dụng giải quyết các bài toán. Dựa vào cấu trúc SGK toán lớp 12, Trắc nghiệm Online sẽ tóm tắt lại hệ thống lý thuyết và hướng dẫn giải các bài tập 1 cách chi tiết, dễ hiểu. Hi vọng rằng, đây sẽ là tài liệu hữu ích giúp các em học tập tốt hơn.

A. Tổng hợp kiến thức

I. Nguyên hàm và tính chất

1. Nguyên hàm

  • Cho hàm số f(x) xác định trên K.
  • Hàm số F(x) được gọi là nguyên hàm của hàm f(x) trên K nếu F'(x) = f(x) với mọi xK.

Định lí 1

  • Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C , hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.

Định lí 2

  • Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.
  • Ký hiệu: f(x)dx=F(x)+C

                         Biểu thức f(x)dx là vi phân của nguyên hàm F(x) của f(x).

2. Tính chất nguyên hàm

Tính chất 1

(f(x)dx)=f(x)

f(x)dx=f(x)+C

Tính chất 2

kf(x)dx=kf(x)dx

Tính chất 3

[f(x)±g(x)]dx=f(x)dx±g(x)dx

Chú ý: Sự tồn tại của nguyên hàm

  • Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.

3. Bảng nguyên hàm

Bài 1: Nguyên hàm

II. Phương pháp tính nguyên hàm

1. Phương pháp đổi biến số 

Định lí 1

  • Nếu f(u)du=F(u)+Cu=u(x) là hàm số có đạo hàm liên tục thì f(u(x))u(x)dx=F(u(x))+C

Hệ quả

f(ax+b)dx1aF(ax+b)+C,(a0)

2. Phương pháp tính nguyên hàm từng phần

Định lí 2

  • Nếu hai hàm số u=u(x)v=v(x) có đạo hàm liên tục trên K thì:
u(x)v(x)dx=u(x)v(x)u(x)v(x)dx
  • Hay: udv=uvvdu  với v(x)dx=dv,u(x)dx=du

B. Bài tập và hướng dẫn giải

Câu 1:Trang 100 - sgk giải tích 12

Trong các cặp hàm số dưới đây, hàm số nào là nguyên hàm của hàm số còn lại?

a) ex và ex

b) sin2x và sin2x

c) (12x)2ex và (14x)ex

Câu 2:Trang 100 - sgk giải tích 12

Tìm nguyên hàm của các hàm số sau?

a) f(x)=x+x+1x3

b) f(x)=2x1ex

c) f(x)=1sin2x.cos2x

d) f(x)=sin5x.cos3x

e) f(x)=tan2x

g) f(x)=e32x

h) f(x)=1(1+x)(12x)

Câu 3: Trang 101 - sgk giải tích 12

Sử dụng phương pháp biến số, hãy tính:

a) (1x)9dx  đặt u=1x

b) x(1+x2)32dx  đặt u=1+x2

c) cos3xsinxdx  đặt t=\cos x$

d) dxex+ex+2  đặt u=ex+1

Câu 4: Trang 101 - sgk giải tích 12

Sử dụng phương pháp tính nguyên hàm từng phần, hãy tính:

a)  xln(1+x)dx

b) (x2+2x1)exdx

c) xsinx(2x+1)dx

d) (1x)cosxdx