Chuyên đề tích phân chống Casio.

Phương pháp chung: 

Cách 1: Giải theo hình thức tự luận

  • Bước 1: Tính tích phân như bình thường.
  • Bước 2: Dựa vào yêu cầu đề bài và làm tiếp.

Cách 2: Sử dụng máy tính

Ví dụ 1:  Cho tích phân $I=\int_{0}^{\frac{\pi}{2}}e^{\sin ^{2}x}\sin x \cos^{3}xdx$. Nếu đổi biến $t=\sin ^{2} x$ thì 

A. $I=\frac{1}{2}\int_{0}^{1}e^{t}(1-t)dt$.

B. $I=2 [\int_{0}^{1}e^{t}dt + \int_{0}^{1}te^{t}dt]$.

C. $I=2\int_{0}^{1}e^{t}(1-t)dt$.

D. $I=\frac{1}{2}[\int_{0}^{1}e^{t}dt+\int_{0}^{1}te^{t}dt]$.

Giải: Đáp án A

Cách 1: Theo tự luận

Đặt $t=\sin ^{2} x \Rightarrow dt=2\sin x \cos x dx$

Đổi cận $x=0 \Rightarrow t=0$, $x=\frac{\pi}{2} \Rightarrow t=1$.

Vậy $I=\frac{1}{2}\int_{0}^{1}e^{t}(1-t)dt$.

Cách 2: Ta chỉ cần tính tích phân đề bài cho và tích phân đáp án. Nếu trừ nhau bằng 0 thì là đáp án đúng.

Tính $I=\int_{0}^{\frac{\pi}{2}}e^{\sin ^{2}x}\sin x \cos^{3}xdx$

Tính tích phân ở đáp án A, B, C. Ở đáp án A

Ví dụ 2: Giả sử rằng $I=\int_{-2}^{0}\frac{3x^{2}+5x-1}{x-2}dx =a \ln \frac{2}{3}+b$. Khi đó giá trị của a+2b là

A. 30.

B. 40.

C. 50.

D. 60.

Giải: Đáp án B

Cách 1: Tự làm (chia phân tử cho mẫu số)

Cách 2: Sử dụng máy tính

Trước hết tính tích phân $I=\int_{-2}^{0}\frac{3x^{2}+5x-1}{x-2}dx =a \ln \frac{2}{3}+b$ và gán cho A

Lúc này chỉ việc giải hệ phương trình với a+2b ở các đáp án. Kết quả nào đẹp thì ta lấy đáp án đó

Đáp án A

Đáp án B

Đáp án C

Đáp án D

Ví dụ 3: Giả sử $I=\int_{1}^{5}\frac{1}{x\sqrt{3x+1}}dx=a\ln 3+b \ln 5$. Khi đó giá trị của $a^{2}+ab+4b^{2}$ là

A. 6.

B. 9.

C. 8.

D. 11.

Giải: Đáp án A

Cách 1: Đặt ẩn $t=\sqrt{3x+1}$.

Cách 2: Sử dụng máy tính

Trước hết tính tích phân gán cho A

Do vế phải của tích phân đều biểu diễn dưới dạng ln nên chắc chắn rằng tích phân đó cũng theo ln. Vì thế có $A=\ln x \Leftrightarrow X=e^{A}.$. Tính giá trị của biểu thức $e^{A}$

Vậy $X=\frac{9}{5}$. Do đó $\ln \frac{9}{5}=2 \ln 3 -\ln 5$ hay $a=2, b=-1$.

Ví dụ 4: Giả sử $\int_{0}^{\frac{1}{2}}\sqrt{1-x^{2}}dx=\frac{\sqrt{3}}{a}+\frac{\pi}{b}$ với $a, b \in \mathbb{Z}$. Khi đó giá trị của $\sqrt[3]{a}+2b$ là

A. 26.

B. 28.

C. 24.

D. 20.

Giải: Đáp án D

Áp dụng công thức tính gần đúng giá trị tích phân để dự đoán hệ số $\int_{a}^{b}f(x)dx\approx \frac{b-a}{2}(f(a)+f(b))$ (sử dụng khi $b-a \leq 1$)

Khi đó $\int_{0}^{\frac{1}{2}}\sqrt{1-x^{2}}dx \approx \frac{1}{4}(1+\sqrt{1-\frac{1}{4}})=\frac{\sqrt{3}}{8}+\frac{1}{4}$

Ta chỉ quan tâm tới phần $\sqrt{3}$ vì giả thiết bài toán cho và dự đoán a=8 và đi tìm b.

Tính tích phân và gán cho A

 

Do $A=\frac{\sqrt{3}}{8}+\frac{\pi}{b}$ nên b=12.

Lưu ý: Các bài toán trên mình khuyến khích nên giải tự luận sẽ nhanh hơn trừ một số bài thực sự phức tạp.

B. Bài tập và hướng dẫn giải