a) Gọi tọa độ D(x; 0).

Ta có: $DA=\sqrt{(1-x)^{2}+3^{2}}=\sqrt{x^{2}-2x+10}$

           $DB=\sqrt{(4-x)^{2}+2^{2}}=\sqrt{x^{2}-8x+20}$

Mà $DA=DB$ => $\sqrt{x^{2}-2x+10}=\sqrt{x^{2}-8x+20}$

<=> $6x=10 <=> x=\frac{5}{3}$

=> $D(\frac{5}{3};0)$

b)  Ta có:

$OA^{2} = 1^{2} + 3^{2} = 10$

=> $OA = \sqrt{10}$

$AB^{2} = 3^{2} + (-1)^{2} = 10$

=> $AB = \sqrt{10}$

$OB^{2} = 4^{2} + 2^{2} = 20$

=> $OB =\sqrt{2}.\sqrt{10}$

=> Chu vi ΔOAB là: $OA + AB + OB = \sqrt{10}+\sqrt{10}+\sqrt{2}.\sqrt{10}= \sqrt{10}(2 + \sqrt{2})$

c) Ta có: $OA^{2} + AB^{2} = 20 = OB^{2}$

=> ΔOAB vuông tại A <=> $OA ⊥ AB$

Diện tích ΔOAB là: $\frac{1}{2}OA.OB=\frac{1}{2}\sqrt{10}\sqrt{10}=5$