Bài tập về vận dụng một số hằng đẳng thức đáng nhớ để giải một số bài tập.
1.
a) $(x+2)(x^{2}-2x+4)-(18+x^{3})$
= $x^{3}+2^{3}-18-x^{3}$
= -10
b) $(2x-y)(4x^{2}+2xy+y^{2})-(2x+y)(4x^{2}-2xy+y^{2})$
= $(2x-y)[(2x)^{2}+(2x)y+y^{2}]-(2x+y)[(2x)^{2}-(2x)y+y^{2}]$
= $[(2x)^{3}-y^{3}]-[(2x)^{3}+y^{3}]$
= $(8x^{3}-y^{3})-(8x^{3}+y^{3})$
= $-2y^{3}$
2.
a) A = $x^{2}+10x+26$ = $(x+5)^{2}+1$
Với x = 45 ta có A = $(45+5)^{2}+1$ = 2501
b) B = $x^{2}-0,2x+0,01$ = $(x=0,1)^{2}$
Với x = 1,1 ta có B = $(1,1-0,1)^{2}$ = 1
3.
a) Tại x = 16 và y = 2 thì ta có:
$x^{2}+9y^{2}-6xy$ = $(x-3y)^{2}$ = $(16-3.2)^{2}$ = $10^{2}$ = 100
b) Tại x = 14 và y = 2
$x^{3}-6x^{2}y-12xy^{2}-8y^{3}$ = $(x-2y)^{3}$ = $(14-2.2)^{3}$ = $10^{3}$ = 1000
4.
a) $(x-3)(x+3)-(x+5)(x-1)$
= $x^{2}-9-x^{2}+x-5x+5$
= $-4x-4$
b) $(3x-2)^{2}+(x+1)^{2}+2(3x-2)(x+1)$
= $[(3x-2)+(x+1)]^{2}$
= $(4x-1)^{2}$
5.
a) $(2x-1)^{2}-(2x+3)(2x-1)=0$
$\Leftrightarrow (2x-1)(2x-1-2x-3)=0$
$\Leftrightarrow -4(2x-1)=0$
$\Leftrightarrow 2x-1=0$
$\Leftrightarrow x=\frac{1}{2}$
b) $(x+5)(x-2)-(x-3)(x+3)=0$
$\Leftrightarrow x^{2}-2x+5x-10-x^{2}+9=0$
$\Leftrightarrow 3x-1=0$
$\Leftrightarrow x=\frac{1}{3}$
6.
a) Với mọi số thực x, y ta có:
$x^{2}+y^{2}-2x-2y+3=(x-1)^{2}+(y-1)^{2}+1$
Do $(x-1)^{2}\geq 0$; $(y-1)^{2}\geq 0$ nên $(x-1)^{2}+(y-1)^{2}+1$ > 0 với mọi số thực x, y
Vậy $x^{2}+y^{2}-2x-2y+3>0$ với mọi số thực x, y
b) Với mọi số thực x ta có:
$x-x^{2}-1=-(x-\frac{1}{2})^{2}-\frac{3}{4}$
Do $(x-\frac{1}{2})^{2}\geq 0$ nên -$(x-\frac{1}{2})^{2}\leq 0$
Nên $-(x-\frac{1}{2})^{2}-\frac{3}{4}<0$
Vậy $x-x^{2}-1<0$ với mọi số thực x