Lời giải Bài 3 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên Nguyễn Huệ.

Lời giải bài 3:

Đề ra : 

Cho tam giác ABC có ba góc đều nhọn nội tiếp trong đường tròn ( O ) , các đường cao AI , BK của tam giác ABC cắt nhau tại H ( I thuộc BC , 

K thuộc AC ).AI và BK cắt đường tròn ( O ) lần lượt tại D và E .Chứng minh rằng :

a.  Tứ giác CIHK là tứ giác nội tiếp .

b.  Tam giác CDE cân .

Hướng dẫn giải chi tiết :

a.  

                                                                   

 Xét tứ giác CIHK ta có :  $\widehat{HIC}=90^{\circ}$        ( Do AI là đường cao )

                                     $\widehat{HKC}=90^{\circ}$        ( Do BK là đường cao )

=>  $\widehat{HIC}+\widehat{HKC}=90^{\circ}+90^{\circ}=180^{\circ}$ . 

 Vậy  Tứ giác CIKH  là tứ giác nội tiếp .  (đpcm)

 

b.  Ta có :  $\widehat{CBE}=\widehat{CAD}$  ( Góc có cạnh tương ứng vuông góc ) .

                 $\widehat{CBD}=\widehat{CAD}$  ( Góc nội tiếp cùng chắn cung CD ) .

=>  $\widehat{CBE}=\widehat{CBD}$ .

=>   CD = DE .

Vậy tam giác CDE cân .    ( đpcm )