Giải câu 84 Bài: Luyện tập sgk Toán 9 tập 2 Trang 99.
a) Ta có: tam giác ABC đều canh 1cm => $\widehat{A}=\widehat{B}=\widehat{C}=60^{\circ}$
=> $\widehat{FCE}=180^{\circ}-60^{\circ}=120^{\circ}$ (do $\widehat{FCE}$ kề bù $\widehat{B}$)
Tương tự, ta có: $\widehat{EBA}=\widehat{DAC}=120^{\circ}$
Vẽ hình:
- Vẽ tam giác đều ABC cạnh 1cm.
- Vẽ $\frac{1}{3}$ đường tròn tâm A, bán kính 1cm, ta được cung CD.
- Vẽ $\frac{1}{3}$ đường tròn tâm B, bán kính 2cm, ta được cung DE.
- Vẽ $\frac{1}{3}$ đường tròn tâm C, bán kính 3cm, ta được cung EF.
b) - Diện tích hình quạt CAD = $\frac{1}{3}$ diện tích hình tròn tâm A
=> Diện tích hình quạt CAD = $\frac{1}{3}.\pi .1^{2}$
- Diện tích hình quạt DBE = $\frac{1}{3}$ diện tích hình tròn tâm B
=> Diện tích hình quạt DBE = $\frac{1}{3}.\pi .2^{2}$
- Diện tích hình quạt ECF = $\frac{1}{3}$ diện tích hình tròn tâm C
=> Diện tích hình quạt ECF = $\frac{1}{3}.\pi .3^{2}$
=> Diện tích phần gạch sọc là: $S=\frac{1}{3}.\pi .1^{2}+\frac{1}{3}.\pi .2^{2}+\frac{1}{3}.\pi .3^{2}=\frac{1}{3}.\pi .(1+4+9)=\frac{14}{3}.\pi =14,65(cm^{2})$