Giải câu 7 bài: Mặt cầu.

a) Gọi O là tâm hình hộp chữ nhật ABCD

=> $OA = OB = OC = OD = OA' = OB' = OC' = OD' = \frac{AC'}{2}$

Mà $AC'=\sqrt{a^{2}+b^{2}+c^{2}}$

=> $OA = OB = OC = OD = OA' = OB' = OC' = OD' = \frac{\sqrt{a^{2}+b^{2}+c^{2}}}{2}$

Vậy mặt cầu đi qua tám đỉnh hình hộp chữ nhật tâm O, bán kính $R=\frac{\sqrt{a^{2}+b^{2}+c^{2}}}{2}$.

b) Giao tuyến của mặt phẳng ABCD với mặt cầu ngoại tiếp hình hộp chữ nhật ABCD.A'B'C'D' là hai đường tròn ngoại tiếp hình chữ nhật ABCD.

=> Bán kính của đường tròn giao tuyến của mp(ABCD) với mặt cầu trên là: 

$r=\frac{AC}{2}=\frac{1}{2}\sqrt{b^{2}+c^{2}}$

Vậy bán kính cần tìm bằng $r=\frac{1}{2}\sqrt{b^{2}+c^{2}}$.