Giải câu 5 bài: Phương trình mặt phẳng.

a) Ta có: $\overrightarrow{AC}=(0;-1;1)$

               $\overrightarrow{AD}=(-1;-1;3)$

=> $\overrightarrow{n}=\overrightarrow{AC}\wedge \overrightarrow{AD}=(-2;-1;-1)$

=> Phương trình mp(ACD) là: $-2(x-5)-1(y-1)-1(z-3)=0<=>2x+y+z-14=0$

     Phương trình mp(BCD) là: $6x+5y+3z-42=0$

b) Gọi phương trình mặt phẳng ($\alpha$) đi qua cạnh AB và song song với cạnh CD là mp(P).

Ta có: $\overrightarrow{AB}=(-4;5;-1)$

           $\overrightarrow{CD}=(-1;0;2)$

=> $\overrightarrow{n}=\overrightarrow{AB}\wedge \overrightarrow{CD}=(10;9;5)$

=> Phương trình mp(P) có dạng: $10(x-5)+9(y-1)+5(z-3)=0<=> 10x+9y+5z-74=0$