Giải câu 30 bài 4: Liên hệ giữa phép chia và phép khai phương sgk Toán 9 tập 1 Trang 19.
Ta có :
a. $\frac{y}{x}.\sqrt{\frac{x^{2}}{y^{4}}} (x>0,y\neq 0)$
<=> $\frac{y}{x}.\frac{\sqrt{x^{2}}}{\sqrt{y^{4}}}$
<=> $\frac{y}{x}.\frac{\left | x \right |}{\left | y^{2} \right |}$
Vì $x>0,y^{2}>0$
<=> $\frac{y}{x}.\frac{x}{y^{2}}=\frac{1}{y}$
Vậy $\frac{y}{x}.\sqrt{\frac{x^{2}}{y^{4}}}=\frac{1}{y}$
b. $2y^{2}.\sqrt{\frac{x^{4}}{4y^{2}}} (y<0)$
<=> $2y^{2}.\frac{\sqrt{(2x^{2})^{2}}}{\sqrt{(2y)^{2}}}$
<=> $2y^{2}.\frac{\left | x^{2} \right |}{2y}$
Vì $x^{2}\geq 0,y<0$
<=> $2y^{2}.\frac{x^{2}}{-2y}=-x^{2}y$
Vậy $2y^{2}.\sqrt{\frac{x^{4}}{4y^{2}}}=-x^{2}y$
c. $5xy.\sqrt{\frac{25x^{2}}{y^{6}}} (x<0,y>0)$
<=> $5xy.\frac{\sqrt{(5x)^{2}}}{\sqrt{(y^{3})^{2}}}$
<=> $5xy.\frac{\left | 5x \right |}{y^{3}}$
Vì x < 0 , y > 0
<=> $5xy.\frac{-5x}{y^{3}}=\frac{-25x^{2}}{y^{2}}$
Vậy $5xy.\sqrt{\frac{25x^{2}}{y^{6}}} =\frac{-25x^{2}}{y^{2}}$
d. $0,2x^{3}y^{3}.\sqrt{\frac{16}{x^{4}y^{8}}} (x\neq 0,y\neq 0)$
<=> $0,2x^{3}y^{3}.\frac{\sqrt{16}}{\sqrt{(x^{2}y^{4})^{2}}}$
<=> $0,2x^{3}y^{3}.\frac{4}{\left | x^{2}y^{4} \right |}$
Vì $ x^{2}y^{4}>0$
<=> $0,2x^{3}y^{3}.\frac{4}{x^{2}y^{4}}=\frac{4x}{5y}$
Vậy $0,2x^{3}y^{3}.\sqrt{\frac{16}{x^{4}y^{8}}}=\frac{4x}{5y}$