Giải câu 3 trang 19 sách toán VNEN lớp 9 tập 2.
Gọi giá tiền một quả thanh yên là x (rupi, x > 0), giá tiền mua một quả táo rừng thơm là y (rupi, y > 0).
Mua 9 quả thanh yên và 8 quả táo rừng thơm hết 107 rupi nên: $9x + 8y = 107$. (1)
Mua 7 quả thanh yên và 7 quả táo rừng thơm hết 91 rupi nên: $7x + 7y = 91$ (2)
Từ (1) và (2), ta có hệ phương trình sau:
$\left\{\begin{matrix}9x + 8y = 107\\ 7x + 7y = 91\end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix}63x + 56y = 749\\ 63x + 63y = 819\end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix}9x + 8y = 107\\\ 7y = 70\end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix}9x + 8y = 107\\\ y = 10\end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix}x = 3\\\ y = 10\end{matrix}\right.$
Vậy, giá tiền một quả thanh yên là 3 rupi, một quả táo rừng thơm là 10 rupi