Giải Câu 3 Bài: Ôn tập cuối năm Phần Hình học sgk Toán 8 tập 2 Trang 131.
Ta có: CE ⊥ AB(gt)
KB ⊥ AB (gt)
Suy ra BK // CH (1)
Tương tự BH // KC (2)
Từ (1) và (2) ta được :
Tứ giác BHCK là hình bình hành. Gọi M là giao điểm của hai đường chéo BC và HK.
a) BHCK là hình thoi HM ⊥ BC
Vì HA ⊥ BC nên HM ⊥ BC ⇔A, H, M thẳng hàng. Tam giác ABC cân tại A.
b) BHCK là hình chữ nhật ⇔ BH ⊥ HC. Ta lại có BE ⊥ HC, CD ⊥ BH nên BH ⊥ HC ⇔ H, D, E trùng nhau. Khi đó H, D, E cũng trùng với A. Vậy tam giác ABC là tam giác vuông ở A.