Giải câu 3 bài 3: Một số phương trình lượng giác thường gặp.
a)
Đặt t = cos(x/2), t ∈ [-1 ; 1]
(1) <=> (1 - t2) - 2t + 2 = 0 ⇔ t2 + 2t -3 = 0 ⇔ t = 1 hoặc t = -3 (loại vì không t/m điều kiện)
Với t = 1 ⇔ cos(x/20 = 1 ⇔ x/2 = k2π ⇔ x = 4kπ, k ∈ Z.
b)
Đặt t = sinx, t ∈ [-1 ; 1]
(2) ⇔ 8(1 - t2) + 2t - 7 = 0 ⇔ 8t2 - 2t - 1 = 0 ⇔ t =
Với t =
Với t =
c)
Đặt t = tanx với t ∈ R
(3) ⇔ 2t2 + 3t + 1 = 0 ⇔ t = -1 hoặc t =
Với t = -1
tan x = 1 =>
Với t =
tan x =
d)
Đặt t = tanx với t ∈ R
(4) ⇔ t - (2/t) + 1 = 0 ⇔ t2 + t - 2 = 0 ⇔ t = 1 hoặc t = -2.
Với t = 1
tan x = 1 =>
Với t = -2
tan x = - 2 =>