Giải câu 3 bài 3: Hàm số liên tục.

a. Đồ thị hàm số \(y = f(x)\) là một đường không liền nét mà bị đứt quãng tại \(x_0= -1\).

Vậy hàm số đã cho liên tục trên khoảng \((-∞; -1)\) và \((- 1; +∞)\).

b.

  • Nếu \(x < -1\): \(f(x) = 3x + 2\) liên tục trên \((-∞; -1)\) (vì đây là hàm đa thức).
  • Nếu \(x> -1\): \(f(x) = x^2- 1\) liên tục trên \((-1; +∞)\) (vì đây là hàm đa thức).
  • Tại \(x = -1\);

Ta có:

\(\underset{x\rightarrow -1^{-} }{lim }f(x) = \underset{x\rightarrow -1^{-} }{lim }(3x+2)=3.(-1)+2=1\)

\(\underset{x\rightarrow -1^{+} }{lim }f(x) = \underset{x\rightarrow -1^{+} }{lim }(x^2-1)=1^2-1=0\)

Vì \(\underset{x\rightarrow -1^{-}}{lim} f(x) \neq \underset{x\rightarrow -1^{+}}{lim} f(x)\)

Vậy không tồn tại \(\underset{x\rightarrow -1}{lim} f(x)\).

Vậy hàm số gián đoạn tại \(x_0= -1\).