a) Ta có: AI→.AM→=AI→.(AB→+BM→)
<=> AI→.AM→=AI→.AB→+AI→.BM→
Mà AI⊥MB => AI→.MB→=0
=> AI→.AM→=AI→.AB→ ( đpcm )
Tương tự, ta có: BI→.BN→=BI→.(BA→+AN→)
<=> BI→.BN→=BI→.BA→+BI→.AN→
Mà BI⊥AN => BI→.AN→=0
=> BI→.BN→=BI→.BA→. (đpcm )
b) Ta có:
AI→.AM→+BI→.BN→=AI→.AB→+BI→.BA→
<=> AI→.AM→+BI→.BN→=AB→.(AI→+BI→=AB→.AB→=AB2→
<=> AI→.AM→+BI→.BN→=AB2=4R2