Giải câu 23 bài 3: Luyện tập sgk Toán đại 8 tập 1 Trang 12.

CM : $(a+b)^{2}=(a-b)^{2}+4ab$

Xét VT = $(a+b)^{2}$

$VT=(a+b)^{2}=a^{2}+2ab+b^{2}=a^{2}-2ab+b^{2}+4ab=(a-b)^{2}+4ab$

Nhận xét : VT = VP = $(a-b)^{2}+4ab$

=>  ( đpcm )

CM : $(a-b)^{2}=(a+b)^{2}-4ab$ 

Xét VT = $(a-b)^{2}$

$VT=(a-b)^{2}=a^{2}-2ab+b^{2}=a^{2}+2ab+b^{2}-4ab=(a+b)^{2}-4ab$

Nhận xét : VT = VP = $(a+b)^{2}-4ab$

=>  ( đpcm )

Áp dụng :

a.  Ta có : $(a-b)^{2}=a^{2}-2ab+b^{2}=a^{2}+2ab+b^{2}-4ab=(a+b)^{2}-4ab$

Thay giá trị , ta có : $7^{2}-4.12=49-48=1$

Vậy $(a-b)^{2}$ = 1.

b.  Ta có :  $(a+b)^{2}=a^{2}+2ab+b^{2}=a^{2}-2ab+b^{2}+4ab=(a-b)^{2}+4ab$

Thay giá trị , ta có : $20^{2}-4.3=400+12=412$

Vậy $(a+b)^{2}$ = 412.