Giải câu 2 trang 54 sách toán VNEN lớp 9 tập 2.
a) $\Delta = [-(2a- 1)]^2 -4\times 1\times (-4a - 3) = 4a^2 + 12a + 13$
$\;\;= (2a)^2 + 2\times 2a\times 3 + 9 + 4 = (2a+3)^2 + 4 \geq 0 \;\forall a$
Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của a.
b) Gọi $x_1;\;x_2$ là hai nghiệm của phương trình đã cho.
Theo hệ thức Vi-et: $\left\{\begin{matrix}x_1 + x_2 = 2a - 1\\x_1\times x_2 = -4a - 3\end{matrix}\right.$
$\left\{\begin{matrix}2(x_1 + x_2) = 4a - 2\\x_1\times x_2 = -4a - 3\end{matrix}\right.$
$\Rightarrow 2(x_1 + x_2) + x_1\times x_2 = -5$
c) $A = x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2\times x_1\times x_2$
$\; = (2a - 1)^2 - 2\times (-4a - 3) = 4a^2 + 4a + 7 = (2a + 1)^2 + 6$
Ta có: $(2a + 1)^2 \geq 0 \;\forall a \Rightarrow (2a + 1)^2 + 6 \geq 6 \;\;\forall a$
Dấu "=" xảy ra khi $(2a + 1)^2 = 0 \Leftrightarrow a = \frac{-1}{2}$.
Vậy giá trị nhỏ nhất của A là 6 khi $a = \frac{-1}{2}$