Giải câu 2 bài Ôn tập chương 5: Đạo hàm.
a) y=2xsinx−cosxx
y′=(2xsinx−cosxx)′
=2.(xsinx)′−(cosxx)′
=212xsinx+2xcosx−−xsinx−cosxx2
=xxsinx+2x2xcosx+xsinx+cosxx2
=x(x+1)sinx+(2x2x+1)cosxx2
b) y=3cosx2x+1
y′=(3cosx2x+1)′=−3(2x+1)sinx−2.3cosx(2x+1)2
=−3(2x+1)sinx−6cosx(2x+1)2
c) y=t2+2cottsint
y′=(t2+2costsint)′
=(t2+2cost)′.sint−(t2+2cost)(sint)′sin2t
=(2t−2sint)sint−cost(t2+2cost)sin2t
=2tsint−2sin2t−t2cost−2cos2tsin2t
=2tsint−t2cost−2(sin2t+cos2t)sin2t
=2tsint−t2cost−2sin2t
d) y=2cosφ−sinφ3sinφ+cosφ
y′=(2cosφ−sinφ3sinφ+cosφ)′
=(2cosφ−sinφ)′(3sinφ+cosφ)−(2cosφ−sinφ)(3sinφ+cosφ)′(3sinφ+cosφ)2
=(−2sinφ−cosφ)(3sinφ+cosφ)−(3cosφ−sinφ)(2cosφ−sinφ)(3sinφ+cosφ)2
=−6sin3φ−2sinφcosφ−3sinφcosφ−cos2φ−(6cos3φ−2sinφcosφ−3sinφcosφ+sin2φ)(3sinφ+cosφ)2
=−7(3sinφ+cosφ)2
e) y=tanxsinx+2
y′=(tanxsinx+2)′
=1cos2x(sinx+2)−cosxtanx(sinx+2)2
=1cos2x(sinx+2)−sinx(sinx+2)2
=sinx+2−sinxcos2xcos2x(sinx+2)2
=sinx(1−cos2x)+2cos2x(sinx+2)2
=sin3x+2cos2x(sinx+2)2
f) y=cotx2x−1
y′=(cotx2x−1)′
=(cotx)′(2x−1)−cotx(2x−1)′(2x−1)2
=−1sin2x(2x−1)−cotx.1x(2x−1)2
=1−2xsin2x−cotxx(2x−1)2