Giải câu 2 bài Ôn tập chương 5: Đạo hàm.

a) y=2xsinxcosxx

y=(2xsinxcosxx)

=2.(xsinx)(cosxx)

=212xsinx+2xcosxxsinxcosxx2

=xxsinx+2x2xcosx+xsinx+cosxx2

=x(x+1)sinx+(2x2x+1)cosxx2

b) y=3cosx2x+1

y=(3cosx2x+1)=3(2x+1)sinx2.3cosx(2x+1)2

=3(2x+1)sinx6cosx(2x+1)2

c) y=t2+2cottsint

y=(t2+2costsint)

=(t2+2cost).sint(t2+2cost)(sint)sin2t

=(2t2sint)sintcost(t2+2cost)sin2t

=2tsint2sin2tt2cost2cos2tsin2t

=2tsintt2cost2(sin2t+cos2t)sin2t

=2tsintt2cost2sin2t

d) y=2cosφsinφ3sinφ+cosφ

y=(2cosφsinφ3sinφ+cosφ)

=(2cosφsinφ)(3sinφ+cosφ)(2cosφsinφ)(3sinφ+cosφ)(3sinφ+cosφ)2

=(2sinφcosφ)(3sinφ+cosφ)(3cosφsinφ)(2cosφsinφ)(3sinφ+cosφ)2

=6sin3φ2sinφcosφ3sinφcosφcos2φ(6cos3φ2sinφcosφ3sinφcosφ+sin2φ)(3sinφ+cosφ)2

=7(3sinφ+cosφ)2

e) y=tanxsinx+2

y=(tanxsinx+2)

=1cos2x(sinx+2)cosxtanx(sinx+2)2

=1cos2x(sinx+2)sinx(sinx+2)2

=sinx+2sinxcos2xcos2x(sinx+2)2

=sinx(1cos2x)+2cos2x(sinx+2)2

=sin3x+2cos2x(sinx+2)2

f) y=cotx2x1

y=(cotx2x1)

=(cotx)(2x1)cotx(2x1)(2x1)2

=1sin2x(2x1)cotx.1x(2x1)2

=12xsin2xcotxx(2x1)2