Giải Câu 2 Bài 4: Hai mặt phẳng vuông góc.
Ta có:
\(\left. \matrix{
(\alpha ) \bot (\beta ) \hfill \cr
AC \bot \Delta \hfill \cr
AC \subset (\alpha ) \hfill \cr} \right\} \Rightarrow AC \bot (\beta )\)
Do đó \(AC\bot AD\) hay tam giác \(ACD\) vuông tại \(A\)
Áp dụng định lí Pytago vào tam giác \(ACD\) ta có:
${CD^2} = {AC^2} + {AD^2}(1)$
Theo giả thiết \(BD\) vuông góc với giao tuyến nên \(BD\bot AB\) hay tam giác \(ABD\) vuông tại \(B\).
Áp dụng định lí Pytago vào tam giác \(ABD\) ta được:
${AD^2} = {AB^2} + {BD^2}(2)$
Từ (1) và (2) suy ra: \({CD^2} = {AC^2} + {AB^2} + {BD^2} = {6^2} + {8^2} + {24^2} = 676\)
\( \Rightarrow DC = \sqrt {676} = 26cm\)