Giải câu 1 trang 125 toán VNEN 9 tập 1.

a) Ta có: MP//NQ nên tứ giác MNQP là hình thang

Mặt khác OO' vuông góc với MP và NQ tại trung điểm của MP và NQ nên tứ giác MNQP là hình thang cân

b) Δ OMP có OM = OP nên ΔOMP là tam giác cân

OPM^ = OMP^

Tứ giác MNQP là hình thang cân nên MPQ^ = PMN^ 

OPM^ + MPQ^ = OMP^ + PMN^90 OPQ^90 hay OP  PQ

Tương tự ta chứng minh được O'Q PQ 

Suy ra PQ là tiếp tuyến chung của (O) và (O').

c) Kẻ tiếp tuyến chung của hai đường tròn tại A cắt MN tại H, cắt PQ tại K

Trong đường tròn (O), theo tính chất hai đường trung tuyến cắt nhau, ta có: MH = AH = HN  MN = 2AH

Trong đường tròn (O'), theo tính chất hai đường trung tuyến cắt nhau, ta có: PK = AK = KQ PQ = 2AK

MN + PQ = 2(AH + AK) = 2HK (1)

Mặt khác HK là đương trung bình của hình thang cân MNQP nên

HK = MP+NQ2 MP + NQ = 2HK (2)

Từ (1) và (2) suy ra MN + PQ = MP + NQ.