Giải câu 1 bài Ôn tập chương 5: Đạo hàm.
a) y=x33−x22+x−5
y′=(x33−x22+x−5)′
=3x23−2x2+1=x2−x+1
b) y=2x−4x2+5x3−67x4
=2.1x−4.1x2+5.1x3−67.1x4
=1x4(2x3−4x2+5x−67)
y′=(1x4)′.(2x3−4x2+5x−67)+(1x4).(2x3−4x2+5x−67)′
=−4x5.(2x3−4x2+5x−67)+(1x4).(6x2−8x+5)
=−8x2+16x3−20x4+247x5+6x2−8x3+5x4
=−2x2+8x3−15x4+247x5
c) y=3x2−6x+74x
y′=(3x2−6x+74x)′
=(3x2−6x+7)′4x−(4x)′(3x2−6x+7)16x2
=(6x−6)4x−4(3x2−6x+7)16x2
=3x2−74x2
d) y=(2x+3x)(x−1)
y′=[(2x+3x)(x−1)]′
=(−2x2+3)(x−1)+12x.(2x+3x)
=−2xx2+2x2+3x−3+1xx+3x2x
=−4x2x2+42x2+12x2x2x2−6x22x2+2x2x2+3x2x2x2
=9x2x−6x2−2x+42x2
e) y=1+x1−x
y′=(1+x1−x)′=12x(1−x)+12x(1+x)(1−x)2
=1−x+1+x2x(1−x)2
=1x(1−x)2
f) y=−x2+7x+5x2−3x
y′=(−x2+7x+5x2−3x)′
=(−2x+7)(x2−3x)−(2x−3)(−x2+7x+5)(x2−3x)2
=−2x3+6x2+7x2−21x−(−2x3+14x2+10x+3x2−21x−15)(x2−3x)2
=−4x2−10x+15(x2−3x)2