Giải bài 13 Ôn tập cuối năm.

a) limx263x2x2+1=63(2)2(2)2+1=123=4

b)limx2x3x2x24

=limx2(x3x2)(x+3x2)(x24)(x+3x2)

=limx2x23x+2(x24)(x+3x2)

=limx2(x2)(x1)(x2)(x+2)(x+3x2)

=limx2x1(x+2)(x+3x2)

=21(2+2)(2+3.22)=116

c) Ta có:

  • limx2+(x23x+1)=46+1=1 
  • {x2>0limx2+(x2)=0

Vậy limx2+x23x+1x2=

d) Ta có:

limx1(x+x2+...+xnn1x)=

{1x>0,x<1limx1(1x)=0

limx1n1x=+

Vậy limx1(x+x2+...+xnn1x)=

e)limx+2x1x+3=limx+x(21x)x(1+3x)

=limx+21x1+3x=2

f) limxx+4x2123x

=limxx+|x|41x223x

=limxxx41x223x

=limxx(141x2)x(2x3)

=limx141x22x3

=143=13

g) limx(2x3+x23x+1)

=limxx3(2+1x3x2+1x3)

=+