Giải bài 13 Ôn tập cuối năm.
a) limx→−26−3x2x2+1=6−3(−2)2(−2)2+1=123=4
b)limx→2x−3x−2x2−4
=limx→2(x−3x−2)(x+3x−2)(x2−4)(x+3x−2)
=limx→2x2−3x+2(x2−4)(x+3x−2)
=limx→2(x−2)(x−1)(x−2)(x+2)(x+3x−2)
=limx→2x−1(x+2)(x+3x−2)
=2−1(2+2)(2+3.2−2)=116
c) Ta có:
Vậy limx→2+x2−3x+1x−2=−∞
d) Ta có:
limx→1−(x+x2+...+xn−n1−x)=−∞
{1−x>0,∀x<1limx→1−(1−x)=0
⇒limx→1−n1−x=+∞
Vậy limx→1−(x+x2+...+xn−n1−x)=−∞
e)limx→+∞2x−1x+3=limx→+∞x(2−1x)x(1+3x)
=limx→+∞2−1x1+3x=2
f) limx→−∞x+4x2−12−3x
=limx→−∞x+|x|4−1x22−3x
=limx→−∞x−x4−1x22−3x
=limx→−∞x(1−4−1x2)x(2x−3)
=limx→−∞1−4−1x22x−3
=1−4−3=13
g) limx→−∞(−2x3+x2−3x+1)
=limx→−∞x3(−2+1x−3x2+1x3)
=+∞