Giải bài 12 Ôn tập cuối năm.

  • Hàm số \(f(x) = \cos x\) có tập xác định \(D = \mathbb R\)
  • Chọn dãy số \((x_n)\) với \( x_n= n2 π\) (\(n\in {\mathbb N}^*\)).

Ta có: \(\lim x_n= \lim (n2 π) = +∞\)

 \(\Rightarrow \mathop {\lim }\limits_{x \to  + \infty } f(x) = \lim f({x_n}) = \lim \,\cos (n2\pi ) = \lim 1 = 1\)

  • Chọn dãy số \((x_n)\) với \({x_n} = {\pi  \over 2} + n2\pi (n \in {\mathbb N^*})\)

Ta có: \(\lim {x_n}({\pi \over 2} + n2\pi ) = + \infty \)

\(\Rightarrow \mathop {\lim }\limits_{x \to + \infty } f(x) = \lim f({x_n}) \)

\(= \lim \left[ {\cos ({\pi \over 2} + n2\pi )} \right] = \lim 0 = 0\)

Từ hai kết quả trên, ta kết luận hàm số \(y = \cos x\)không có giới hạn khi \(x \rightarrow + ∞\)