Giải bài 10 Ôn tập cuối năm.
a. lim(n+1)(3−2n)2n3+1
=lim(1+1n)(3n−2)21+1n3
=(1+0)(0−2)21+0=4
b. Ta có:
1n2+1+2n2+1+3n2+1+...+n−1n2+1
=1+2+...+n−1n2+1
=n(n−1)2n2+1
=n2−n2(n2+1)
⇒lim(1n2+1+2n2+1+3n2+1+...+n−1n2+1)
=limn2−n2(n2+1)
=limn2(1−1n)2n2(1+1n2)
=lim1−1n2(1+1n2)=12
c. lim4n2+1+n2n+1
=limn.4+1n2+n2n+1
=limn.(4+1n2+1)n(2+1n)
=lim4+1n2+12+1n
=2+12=32
d. limn(n−1−n)
=limn(n−1−n)(n−1+n)n−1+n
=limn[(n−1)−n]n−1+n
=lim−nn(1−1n+1)
=lim−11−1n+1=−12