a) Do OG là tia phan giác góc COD nên $\widehat{COG}=\widehat{DOG}=\frac{1}{2}\widehat{COD}=\frac{1}{2}80^{\circ}=40^{\circ}$
Do hai góc COG và EOG là hai góc kề nhau nên $\widehat{COG}+\widehat{EOG}=\widehat{COE}$
Suy ra $\widehat{EOG}=\widehat{COE}-\widehat{COG}=60^{\circ}-40^{\circ}=20^{\circ}$
b) Do hai góc COE và DOE là hai góc kề nhau nên $\widehat{COE}+\widehat{DOE}=\widehat{COD}$
Suy ra $\widehat{DOE}=\widehat{COD}-\widehat{COE}=80^{\circ}-60^{\circ}=20^{\circ}$
Do đó $\widehat{EOG}=\widehat{DOE}$ (cùng bằng $20^{\circ}$)
Mặt khác OE nằm giữa hai tia OD và OG nên OE là tia phân giác góc DOG.