Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội.
Lời giải bài 4 :
Đề bài :
Cho nửa đường tròn (O; R) đường kính BC. Lấy điểm A trên tia đối của . tia CB. Kẻ tiếp tuyến AF của nửa đường tròn (O) ( với F là tiếp điểm), tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Biết AF =$\frac{4R}{3}$.
a) Chứng minh tứ giác OBDF nội tiếp. Định tâm I đường tròn ngoại tiếp tứ giác OBDF.
b) Tính $\cos \widehat{DAB}$ .
c) Kẻ OM ⊥ BC ( M ∈ AD) . Chứng minh : $\frac{BD}{DM}-\frac{DM}{AM}=1$ .
Hướng dẫn giải chi tiết :
a. Ta có : $\widehat{DBO}=90^{\circ}$ ,$\widehat{DFO}=90^{\circ}$ (t/c tiếp tuyến)
=> $\widehat{DBO}+\widehat{DFO}=180^{\circ}$
=> Tứ giác OBDF nội tiếp đường tròn. (đpcm)
=> Khi đó Tâm I của đường tròn ngoại tiếp tứ giác OBDF chính là trung điểm của OD ( IO = ID ).
b. Áp dụng địn lý Py- ta-go cho tam giác OFA vuông ở F , ta có :
$OA=\sqrt{OF^{2}+AF^{2}}=\sqrt{R^{2}+(\frac{4R}{3})^{2}}=\frac{5R}{3}$
=> $\cos \widehat{FAO}=\frac{AF}{OA}=\frac{4R}{3}:\frac{5R}{3}=0,8$
Mà $ \widehat{FAO}=\widehat{DAB}$
=> $\cos \widehat{FAO}=\cos \widehat{DAB}$
=> $\cos \widehat{DAB}=0,8$ .
c. Ta có : OM // BD ($\perp BC$ )
=> $ \widehat{MOD}=\widehat{BDO}$ ( so le trong )
$ \widehat{ODM}=\widehat{BDO}$ ( t/c 2 tiếp tuyến cắt nhau )
=> $ \widehat{MDO}=\widehat{MOD}$
Vậy tam giác MOD cân tại M => MD = MO .
Áp dụng hệ quả định lí Talet cho tam giác ABD , ta có :
$\frac{BD}{OM}=\frac{AD}{AM}<=> \frac{BD}{DM}=\frac{AD}{AM}$
<=> $ \frac{BD}{DM}=\frac{AM+DM}{AM}1+\frac{DM}{AM}$
<=> $ \frac{BD}{DM}-\frac{DM}{AM}=1$ (đpcm) .