Giải câu 9 bài ôn tập chương 4: Bất đẳng thức, bất phương trình sgk Đại số 10 trang 107.

ĐỊNH LÍ

Cho (f(x)=ax^2+bx+c\,(a\neq 0), \Delta = b^2-4ac\)

  • Nếu \(\Delta <0\)thì \(f(x)\)luôn cùng dấu với hệ số \(a, \forall x \in \mathbb{R}\)
  • Nếu \(\Delta =0\)thì \(f(x)\)luôn cùng dấu với hệ số a trừ khi \(x=-\frac{-b}{2a}\)
  • Nếu \(\Delta >0\)thì \(f(x)\)cùng dấu với hệ số a khi \(x<x_1\)hoặc \(x>x_2\), trái dấu với hệ số a khi \(x_1<x<x_2\)

trong đó \(x_1; x_2\,(x_1<x_2)\)là hai nghiệm của \(f(x)\).