a. Đường tròn mô tả ranh giới bên ngoài của vùng phủ sóng đi qua tâm I(-2;1), có bán kính phủ sóng 3km nên phương trình đường tròn đó là:

${{\left( x+2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=9$

b. Nếu người dùng điện thoại ở vị trí có tọa độ M (-1;3)

$\Rightarrow IM=\sqrt{{{\left( -1-(-2) \right)}^{2}}+{{\left( 3-1 \right)}^{2}}}=\sqrt{13}\approx 3,6>R$

$\Rightarrow $ Người dùng điện thoại ở vị trí có tọa độ (-1;3) không thể sử dụng dịch vụ của trạm này.

c.

Giải bài 5 Phương trình đường tròn

Giả sử vị trí đứng của người đó là B(-3;4). 

(BI) qua I (-2;1), nhận vecto pháp tuyến $\overrightarrow{{{n}_{BI}}}\bot \overrightarrow{BI}(1;-3)\Rightarrow \overrightarrow{{{n}_{BI}}}(3;1)$ 

$\Rightarrow$  Phương trình tổng quát của (BI): 3(x+2)+1(y-1) = 0

hay (BI): 3x+y+5=0

Gọi A là giao điểm của đường tròn tâm I và (BI)

$\Rightarrow$ Khoảng cách ngắn nhất để người đó di chuyển được từ vị trí B(-3; 4) tới vùng phủ sóng là BI.

Tọa độ của A là nghiệm của hệ 

$\left\{ \begin{align}& 3x+y+5=0 \\& {{\left( x+2 \right)}^{2}}+{{\left( y-1 \right)}^{2}}=9 \\\end{align} \right.$

$\Leftrightarrow \left\{ \begin{align}& y=-3x-5 \\& {{(x+2)}^{2}}+{{(-3x-5-1)}^{2}}=9 \\\end{align}\right.$ $\Leftrightarrow \left\{ \begin{align}& y=-3x-5 \\ & {{(x+2)}^{2}}+{{(-3x-6)}^{2}}=9 \\\end{align} \right.$

$\Leftrightarrow \left\{ \begin{align}& y=-3x-5 \\& {{(x+2)}^{2}}+9{{(x+2)}^{2}}=9 \\\end{align} \right.$ $\Leftrightarrow \left\{ \begin{align}& y=-3x-5 \\ & {{(x+2)}^{2}}=\frac{9}{10} \\\end{align} \right.$

$\Leftrightarrow \left\{ \begin{align}& y=-3x-5 \\& x+2=\frac{-3\sqrt{10}}{10} \\\end{align} \right.$

$\Leftrightarrow \left\{ \begin{align}& y=\frac{10+9\sqrt{10}}{10} \\& x=-\frac{20+3\sqrt{10}}{10} \\\end{align} \right.$

$\Rightarrow AB=\sqrt{{{\left( -\frac{20+3\sqrt{10}}{10}+2 \right)}^{2}}+{{\left( \frac{10+9\sqrt{10}}{10}-1 \right)}^{2}}}=3$