Giải câu 6 bài: Ôn tập chương III.

Gọi $t_{1}$ (giờ) là thời gian người thứ nhất sơn xong bức tường

       $t_{2}$ (giờ) thời gian người thứ hai sơn xong bức tường. ( $t_{1} > 0; t_{2}> 0$)

Một giờ: Người thứ nhất sơn được: $\frac{1}{t_{1}}$ bức tường

              Người thứ hai sơn được: $\frac{1}{t_{2}}$ bức tường

=> $\frac{7}{t_{1}}+\frac{4}{t_{2}}=\frac{5}{9}$   (1)

Mặt khác,sau 4 giờ làm việc chung họ sơn được : $\frac{4}{9}-\frac{1}{18}=\frac{7}{18}$ bức tường

=> $\frac{4}{t_{1}}+\frac{4}{t_{2}}=\frac{7}{18}$   (2)

Từ (1), (2) => ta có hệ sau: $\left\{\begin{matrix}\frac{7}{t_{1}}+\frac{4}{t_{2}}=\frac{5}{9} & \\ \frac{4}{t_{1}}+\frac{4}{t_{2}}=\frac{7}{18} & \end{matrix}\right.$

Đặt $x=\frac{1}{t_{1}}  ; y=\frac{1}{t_{2}}$

=> Hệ <=> $\left\{\begin{matrix} 7x+4y= \frac{5}{9} & \\ 4x+4y=\frac{7}{18} & \end{matrix}\right.$

<=> $\left\{\begin{matrix}x=\frac{1}{18} & \\ y=\frac{1}{24} & \end{matrix}\right.$

<=> $\left\{\begin{matrix}t_{1}=18 & \\ t_{2}=24 & \end{matrix}\right.$

Vậy nếu làm riêng, người thứ nhất sơn xong bức tường sau 18 giờ

                               Người thứ hai sơn xong bức tường sau 24 giờ.