a. S = $\frac{1}{2}$. AB. AC. sinA = $\frac{1}{2}$. 6. 8. sin60$^{\circ}$ = $12\sqrt{3}$

b. Áp dụng định lí cosin, ta có:

$BC^{2} = AB^{2} + AC^{2} - 2AB. AC. cosA = 6^{2} + 8^{2} - 2. 6. 8. cos60^{\circ}$ = 52

$\Rightarrow$ BC = $2\sqrt{13}$

Ta có: S = $\frac{AB. AC. BC}{4R}$ $\Rightarrow$ R = $\frac{AB. AC. BC}{4S}$ = $\frac{6. 8. 2\sqrt{13}}{4.12\sqrt{3}}$ = $\frac{8\sqrt{39}}{3}$ 

Xét tam giác IBC có IB = IC = R = $\frac{8\sqrt{39}}{3}$

$\Rightarrow$ p = $\frac{1}{2}$.($\frac{8\sqrt{39}}{3}$ + $\frac{8\sqrt{39}}{3}$ + $2\sqrt{13}$) $\approx$ 20,3

Áp dụng công thức Heron: S = $\sqrt{p(p - IC)(p - IB)(p -BC)} \approx 58,8$