Giải câu 5 bài 1: Bất đẳng thức sgk Đại số 10 trang 79.

Đặt \(\sqrt x = t, x ≥ 0 \Rightarrow t ≥ 0\).

Vế trái trở thành: \({t^8} - {t^5} + {t^2} - t + 1 = f(t)\)

  • Nếu \(t = 0\), hoặc \(t = 1\) thì \(f(t) = 1 >0\)
  • Với \(0 < t <1\),      

\(f\left( t \right) = {t^8} + ({t^2} - {t^5}) + 1 - t\)

\({t^8} > 0;1 - t > 0,;{t^2} - {t^{5}} = {t^3}\left( {1-t} \right) > 0\).

\(\Rightarrow f(t) > 0\).

  • Với \(t > 1\) thì \(f\left( t \right) = {t^5}({t^3}-1) + t\left( {t - 1} \right) + 1 > 0\)

Vậy \(f(t) > 0 ,∀\,t ≥ 0\).

Hay \(x^4- \sqrt {{x^5}} + x - \sqrt x + 1 > 0, ∀x ≥ 0\) (đpcm)