Giải câu 36 bài: Ôn tập chương II sgk Toán 9 tập 1 Trang 61.
Hàm số $y = ( k + 1)x + 3$ có các hệ số $a = k + 1, b = 3$
Hàm số $y = (3 – 2k)x + 1$ có các hệ số $a' = 3 - 2k, b' = 1$
Hai hàm số là hàm số bậc nhất nên a và a' khác 0, tức là:
<=> $\left\{
a) Theo đề bài ta có: $b ≠ b'$ (vì 3 ≠ 1)
=> Để đường thẳng $y = (k + 1)x + 3$ // $y = (3 – 2k)x + 1$ <=> $a = a'$
<=> $k + 1 = 3 – 2k$
=> $k=\frac{2}{3}$
Hai đường thẳng $y = (k + 1)x + 3$ và $y = (3 – 2k)x + 1$ cắt nhau <=> $a ≠ a' $ tức là:
<=> $k+1\neq 3-2k <=> k\neq \frac{2}{3}$
=> $k\neq -1; k\neq \frac{3}{2}; k\neq \frac{2}{3}$
c) Do $b ≠ b' $ (vì 3 ≠ 1) => hai đường thẳng không thể trùng nhau với mọi giá trị k.