Giải câu 3 trang 101 toán VNEN 8 tập 1.

a)

Xét tam giác ABD, có: M là trung điểm AB và Q là trung điểm AD

$\Rightarrow$ QM là đường trung bình của tam giác ABD $\Rightarrow$ QM // BD. (1)

Xét tam giác BCD, có: N là trung điểm BC và P là trung điểm CD

$\Rightarrow$ NP là đường trung bình của tam giác BCD $\Rightarrow$ PN // BD. (2)

Từ (1) và (2) $\Rightarrow$ QM // PN. (*)

Chứng minh tương tự, ta có QP // MN. (**)

Từ (*) và (**) $\Rightarrow$ MNPQ là hình bình hành.

b)

 

Xét tam giác GHK, có: X là trung điểm GH và T là trung điểm GK

$\Rightarrow$ TX là đường trung bình của tam giác ABD $\Rightarrow$ TX = $\frac{1}{2}$KH. (1)

Xét tam giác KHI, có: Y là trung điểm HI và Z là trung điểm KI

$\Rightarrow$ YZ là đường trung bình của tam giác KHI $\Rightarrow$ YZ = $\frac{1}{2}$KH. (2)

Từ (1) và (2) $\Rightarrow$ TX = YZ = $\frac{1}{2}$KH. (*)

Chứng minh tương tự, ta có XY = TZ = $\frac{1}{2}$GI.(**)

Mà GHIK là hình chữ nhật nên KH = GI. (***)

Từ (*), (**), (***) $\Rightarrow$ XY = YZ = ZT = TX $\Rightarrow$ XYZT là hình thoi.