Giải câu 2 trang 96 toán VNEN 9 tập 1.

a) Ta có: HK // AE (cùng vuông góc với CD)

Theo định lý Ta-lét trong tam giác AEF, ta có:

$\frac{AK}{KF}$ = $\frac{AO}{OB}$

Mà AO = OB nên KA = KF (đpcm).

b) * Ta có: OK // BF (cùng vuông góc với CD)

Theo định lý Ta-lét trong tam giác ABF, ta có:

$\frac{HF}{HE}$ = $\frac{KF}{KA}$ 

Mà KF = KA (theo câu a) nên HE = HF

* $\Delta $OCD có OC = OD nên $\Delta $OCD cân tại O

OH $\perp $ CD nên H là trung điểm CD $\Rightarrow $ HC = HD

Ta có: HE = HF và HC = HD $\Rightarrow $ HC - HE = HD - HF $\Leftrightarrow $ CE = DF (đpcm).