Giải câu 2 trang 96 toán VNEN 9 tập 1.

a)

Kẻ OM $\perp $ CD

Xét $\Delta $OCD có OC = OD nên $\Delta $OCD cân tại O, OM $\perp $ CD nên M là trung điểm CD $\Rightarrow $ DM = MC

Ta có: EC//OM//FD (cùng vuông góc với CD)

Theo định lý Ta-lét ta được: $\frac{DM}{MC}$ = $\frac{FO}{OE}$ 

Mà DM = MC nên FO = OE

Ta có: OA = OB

           OF = OE

suy ra: OA + OF = OB + OE

$\Leftrightarrow $ AF = BE (đpcm).

b) 

Kẻ OM // AE // BF (M $\in $ EF)

Ta có: OM = ON, AM = BN nên OM - AM = OB - BN $\Leftrightarrow $ OA = OB

Theo định lý Ta-lét ta được: $\frac{FM}{ME}$ = $\frac{BO}{OA}$ 

Mà OA = OB nên FM = ME hay M là trung điểm EF

Xét $\Delta $OEF có OE = OF, M là trung điểm EF nên OM $\perp $ EF

Mặt khác AE // BF // OM nên AE $\perp $ EF và BF $\perp $ EF (đpcm).