Xét tọa độ giao điểm của (E) và trục Ox có: 

$\frac{{{x}^{2}}}{49}+\frac{{{0}^{2}}}{25}=1$

$\Leftrightarrow {{x}^{2}}=49$

$\Leftrightarrow \left[ \begin{align}& x=-7 \\& x=7 \\\end{align} \right.$

$\Rightarrow {{A}_{1}}(-7;0)$ hoặc ${{A}_{2}}(7;0)$

Xét tọa độ giao điểm của (E) và trục Oy có: 

$\frac{{{0}^{2}}}{49}+\frac{{{y}^{2}}}{25}=1$

$\Leftrightarrow {{y}^{2}}=25$

$\Leftrightarrow \left[ \begin{align}& y=-5 \\& y=5 \\\end{align} \right.$

$\Rightarrow {{B}_{1}}(-5;0)$ hoặc ${{B}_{2}}(5;0)$

Có: ${{a}^{2}}={{b}^{2}}+{{c}^{2}}$

$\Rightarrow {{c}^{2}}={{a}^{2}}-{{b}^{2}}=49-25=16$

$\Rightarrow \left[ \begin{align}& c=-4 \\ & c=4 \\\end{align} \right.$

$\Rightarrow {{F}_{1}}(-4;0)$ hoặc ${{F}_{2}}(4;0)$