Giải Câu 2 Bài 2: Hai đường thẳng vuông góc.
a) \(\overrightarrow{AB}.\overrightarrow{CD}=\overrightarrow{AB}.(\overrightarrow{AD}-\overrightarrow{AC})\)
=> $\overrightarrow{AB}.\overrightarrow{CD}=\overrightarrow{AB}.\overrightarrow{AD}-\overrightarrow{AB}.\overrightarrow{AC}$
\(\overrightarrow{AC}.\overrightarrow{DB}=\overrightarrow{AC}.(\overrightarrow{AB}-\overrightarrow{AD})\)
=> $\overrightarrow{AC}.\overrightarrow{DB}=\overrightarrow{AC}.\overrightarrow{AB}-\overrightarrow{AC}.\overrightarrow{AD}$
\(\overrightarrow{AD}.\overrightarrow{BC}=\overrightarrow{AD}.(\overrightarrow{AC}-\overrightarrow{AB})\)
=> $\overrightarrow{AD}.\overrightarrow{BC}=\overrightarrow{AD}.\overrightarrow{AC}-\overrightarrow{AD}.\overrightarrow{AB}$
Cộng từng vế ba đẳng thức trên ta được:
$\overrightarrow{AB}.\overrightarrow{CD}+\overrightarrow{AC}.\overrightarrow{DB}+\overrightarrow{AD}.\overrightarrow{BC}=0$
b) \(AB ⊥ CD \Rightarrow \overrightarrow{AB}.\overrightarrow{CD}=0,\)
\(AC ⊥ DB \Rightarrow \overrightarrow{AC}.\overrightarrow{DB}=0\)
Từ đẳng thức câu a $\overrightarrow{AB}.\overrightarrow{CD}+\overrightarrow{AC}.\overrightarrow{DB}+\overrightarrow{AD}.\overrightarrow{BC}=0$ ta có:
\(\overrightarrow{AD}.\overrightarrow{BC}=0\Rightarrow AD ⊥ BC\).