Giải Câu 1 Bài Câu hỏi trắc nghiệm chương 3.

a) Sai

Vì: \(\left\{ \matrix{\overrightarrow {AB} = - \overrightarrow {BA} \hfill \cr \overrightarrow {AC} = - \overrightarrow {CA} \hfill \cr} \right.\)

nên từ:

\(\overrightarrow {AB}  = 3\overrightarrow {AC} \) ta suy ra \(\overrightarrow {BA}  = 3\overrightarrow {CA} \)

b) Sai

Vì:

\(\overrightarrow {AB}  =  - 3\overrightarrow {AC}  \Rightarrow \overrightarrow {AC}  + \overrightarrow {CB}  =  - 4\overrightarrow {AC}  \Rightarrow \overrightarrow {CB}  =  - 4\overrightarrow {AC} \)

c)  Đúng

vì: \(\overrightarrow {AB}  =  - 2\overrightarrow {AC}  + 5\overrightarrow {AD} \): Đẳng thức nàu chứng tỏ ba vecto \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) đồng phẳng, tức là 4 điểm \(A, B, C, D\) cùng nằm trong một mặt phẳng.

d) Sai

Vì: \(\overrightarrow {AB}  =  - {1 \over 2}\overrightarrow {BC}  \Rightarrow \overrightarrow {BA}  = {1 \over 2}BC\)

Điều này chứng tỏ hai vecto \(\overrightarrow {BA} ,\overrightarrow {BC} \) cùng phương, do đó điểm B nằm ngoài đoạn thẳng \(AC\), \(B\) không là trung điểm của \(AC\)

Kết quả: trong bốn mệnh đề trên, chỉ có c) đúng.