a. $\overrightarrow{BA}(4; -4)$ và $\overrightarrow{BC}(-3;-3)$.

b. $\overrightarrow{AC}(-7;1)$

$AB = \sqrt{4^{2}+4^{2}}=4\sqrt{2}$

$BC = \sqrt{3^{2}+3^{2}}=3\sqrt{2}$

$AC = \sqrt{7^{2}+1^{2}}=5\sqrt{2}$

Xét tam giác ABC có: $AC^{2}=50$, $AB^{2}+BC^{2} = 32 + 18 = 50$

=> $AC^{2} = AB^{2}+BC^{2}$

=> Tam giác ABC vuông tại B (định lí Pytago đảo).

  • Diện tích: $S_{ABC}=\frac{1}{2}BC.BA=12$
  • Chu vi: $P_{ABC}=BC+BA+AC=12\sqrt{2}\approx 17$

c. Tọa độ trọng tâm G là:

$\left ( \frac{x_{A}+x_{B}+x_{C}}{3};\frac{y_{A}+y_{B}+y_{C}}{3} \right )=\left ( \frac{2-2-5}{3};\frac{1+5+2}{3} \right )=\left (\frac{-5}{3};\frac{8}{3}\right )$

Vậy G $\left (\frac{-5}{3};\frac{8}{3}\right )$

d. Gọi D(x; y) là đỉnh của hình bình hành BCAD.

BCAD là hình bình hành khi và chỉ khi $\overrightarrow{AD}=\overrightarrow{CB}$

$\overrightarrow{AD}(x-2;y-1)$ và $\overrightarrow{CB}(3;3)$

$\overrightarrow{AD}=\overrightarrow{CB}$

$\Leftrightarrow \left\{\begin{matrix}x-2=3\\ y-1=3\end{matrix}\right.$

=> x = 5; y = 4

Vậy D(5; 4)