Áp dụng định lí cosin cho tam giác ABC có: 

$a^{2}=b^{2}+c^{2} -2bc.cosA$

a. Nều góc A nhọn thì cos A > 0, suy ra: 2.b.c.cos A >0 

=> $a^{2}=b^{2}+c^{2} -2bc.cosA < b^{2}+c^{2}$

b. Nếu góc A tù thì cos A < 0, suy ra: 2.b.c.cos A <0 

=> $a^{2}=b^{2}+c^{2} -2bc.cosA > b^{2}+c^{2}$

c. Nếu góc A vuông thì cos A = 0, suy ra: 2.b.c.cos A =0 

=> $a^{2}=b^{2}+c^{2} -2bc.cosA = b^{2}+c^{2}$