Giải bài 3 trang 78 toán 7 tập 2 chân trời sáng tạo.

a) Gọi F là giao điểm của DE và BC

+ AD = AE => ∆ADE cân tại A

∆ABC vuông cân tại A => BA ⊥ AC hay EA ⊥ AD

=> ∆ ADE vuông cân tại A

=> AED^ = ADE^ = 45°

+ ∆ ABC vuông cân tại A

=> ABC^ = ACB^ = 45°

+ Xét ∆EFC có : FEC^FCE^EFC^ = 180°

                    =>  45° + 45° + EFC^ = 180°

                    => EFC^ = 180° - 90° = 90°

=> EF ⊥ BC hay DE ⊥ BC.

b) Xét tam giác BCD có: CA ⊥ BD => CA là đường cao của ∆ BCD

                                     DE ⊥ BC => DE là đường cao của ∆ BCD

                                     Mà DE giao với CA tại E

=> E là trực tâm của ∆ BCD

=> BE ⊥ CD.