a) −57×211+−57×911+57
= −57×(211+911)+57 = −57×1+57=−57+57=0.
b) [(−38+1123)/59+(−58+1223)/59]×−11325
= [(−38+1123+−58+1223)/59]×−11325
= [(−38+−58)+(1123+1223)]/59×−11325
= [(−1)+1]/59×−11325=(0/59)×−11325=0×−11325=0.
c*) Nhận xét: Với hai số hữu tỉ x, y ta có:
(x×y)n=xn×yn;(xy)n=xnyn(y≠0);
15555−(−0.25)2×42
=(155)5−(−0.25×4)2=35−(−1)2=243−1=242.
d*)−215×9466×83+0.75×−12+0.375.
= −215×(32)4(2×3)6×(23)3+(−0.375)+0.375.
= −215×3826×36×29+[(−0.375)+0.375]
= −215×38215×36+0=−32=−9.