a) $(-0.1)^{2}$ $\times$ $(-0.1)^{4}$ = $(-0.1)^{2+4}$ = $(-0.1)^{6}$ = $(-0.1)^{3\times2}$ = $[(-0.1)^{3}]^{2}$
Vậy $(-0.1)^{2}$ $\times$ $(-0.1)^{4}$ = $[(-0.1)^{3}]^{2}$;
b) $(\frac{1}{2})^{8}$ / $(\frac{1}{2})^{2}$ = $(\frac{1}{2})^{8-2}$ = $(\frac{1}{2})^{6}$ = $(\frac{1}{2})^{3+3}$ = $(\frac{1}{2})^{3}$ x $(\frac{1}{2})^{3}$
Vậy $(\frac{1}{2})^{8}$ / $(\frac{1}{2})^{2}$ = $(\frac{1}{2})^{3}$ $\times$ $(\frac{1}{2})^{3}$ ;
c) $9^{8}$ / $27^{3}$ = $(3^{2})^{8}$ / $(3^{3})^{3}$ = $3^{2\times8}$ / $3^{3\times3}$ = $3^{16}$ / $3^{9}$ = $3^{7}$ = $3^{2+5}$ = $3^{2}$ x $3^{5}$
Vậy $9^{8}$ / $27^{3}$ = $3^{2}$ x $3^{5}$;
d) $(\frac{1}{4})^{7}$ $\times$ 0.25 = $(\frac{1}{4})^{7}$ $\times$ $\frac{1}{4}$ = $(\frac{1}{4})^{7+1}$ = $(\frac{1}{4})^{8}$ = $(\frac{1}{4})^{2\times4}$ = $[(\frac{1}{4})^{2}]^{4}$
Vậy $(\frac{1}{4})^{7}$ x 0.25 = $[(\frac{1}{4})^{2}]^{4}$.
e) $[(-0.7)^{2}]^{3}$ = $[(0.7)^{2}]^{3}$ = $(0.7)^{2\times3}$ = $(0.7)^{3\times2}$ = $[(-0.7)^{3}]^{2}$
Vậy $[(-0.7)^{2}]^{3}$ = $[(-0.7)^{3}]^{2}$.