Giải câu 8 bài Ôn tập chương 6 sgk Đại số 10 trang 156.

a)  \(A = \sin \left ( {\pi \over 4} + x \right ) - \cos \left ( {\pi \over 4} - x \right ) \)

\(= \sin {\pi \over 4}\cos x + \cos {\pi \over 4}\sin x - \cos x\cos {\pi \over 4} - \sin x \sin {\pi \over 4} \)

\(= {{\sqrt 2 } \over 2}(\cos x + \sin x - \cos x - {\mathop{\rm s}\nolimits} {\rm{inx}}) = 0 \)

Vậy biểu thức A không phụ thuộc vào \(x\)

b)  \(B = \cos \left ( {\pi \over 6} - x \right )- \sin \left ( {\pi \over 3} + x \right ) \)

\(= \cos {\pi \over 6}{\mathop{\rm cosx}\nolimits} + \sin {\pi \over 6}sinx - sin{\pi \over 3}\cos x - \cos {\pi \over 3}\sin x \)

\(= \cos x\left ( \cos {\pi \over 6} - sin{\pi \over 3} \right )+ sin\,x\left ( sin\,\frac{\pi }{6}-cos\,\frac{\pi }{3} \right )\)

\(=0.cos\,x+0.sin\,x=0\)

Vậy biểu thức B không phụ thuộc vào x.

c)  \(C = {\sin ^2}x + cos \,\left ( {\pi \over 3} - x \right )\,cos\,\left ( {\pi \over 3} + x \right ) \)

\(= {\sin ^2}x + \left[ {\cos {\pi \over 3}\cos x + \sin {\pi \over 3}\sin x} \right]\left[ {\cos {\pi \over 3}\cos x - \sin {\pi \over 3}\sin x} \right] \)

\(= {\sin ^2}x + {\cos ^2}{\pi \over 3}{\cos ^2}x - {\sin ^2}{\pi \over 3}{\sin ^2}x \)

\(= {\sin ^2}x + {1 \over 4}{\cos ^2}x - {3 \over 4}{\sin ^2}x \)

\(=\frac{1}{4}cos^2\,x+\frac{1}{4}\,sin^2\,x\)

\(= {1 \over 4}({\cos ^2}x + {\sin ^2}x) = {1 \over 4} \)

Vậy biểu thức C không phụ thuộc vào x.

d) \(D = {{2{{\sin }^2}x + 2\sin x\cos x} \over {2{{\cos }^2}x + 2\sin x\cos x}}\cot x\)

\(= \frac{2sin\,x(sin\,x+cos\,x)}{2cos\,x(cos\,x+sin\,x)}.\frac{cos\,x}{sin\,x}\)

\(=\frac{sin\,x}{cos\,x}.\frac{cos\,x}{sin\,x}=1\)

Vậy biểu thức D không phụ thuộc vào x.