Ta có $P(x)\times Q(x)=R(x)$, suy ra Q(x) = R(x) / P(x)
a) $Q(x)=(-x^{3}+8)/(x-2)=-x^{2}-10x^{3}+x^{2}+3x-11$;
b) $Q(x)=(10-13x+2x^{2}+x^{3})/(x^{2}-3x+2)=x+5$.
Ta có $P(x)\times Q(x)=R(x)$, suy ra Q(x) = R(x) / P(x)
a) $Q(x)=(-x^{3}+8)/(x-2)=-x^{2}-10x^{3}+x^{2}+3x-11$;
b) $Q(x)=(10-13x+2x^{2}+x^{3})/(x^{2}-3x+2)=x+5$.